Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
J Headache Pain ; 25(1): 60, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641794

RESUMO

BACKGROUND: Despite the recognised high prevalence of migraines among bank employees, yet their healthcare utilisation patterns and the economic burden of migraines remain underexplored. AIM: To examine migraine-related healthcare utilisation among bank employees in China, and to estimate the economic burden of migraines. METHODS: A cross-sectional survey was conducted in Guizhou province, China between May and October 2022. The HARDSHIP questionnaire was used to identify migraine-positive individuals and enquire about their healthcare utilisation and productivity losses. A probabilistic decision-analytic model with a micro-costing approach was used to estimate the economic burden from the perspectives of the healthcare system, employers, and society. All costs were expressed in 2022 United States dollars. One-way and probabilistic sensitivity analyses were performed. RESULTS: Nearly half of individuals with migraines reported not seeking medical care. Only 21.8% reported seeking outpatient consultations, 52.5% reported taking medicines, and 27.1% reported using complementary therapies. Chronic migraine patients had significantly higher healthcare utilisation than episodic migraine patients. Among individuals with a monthly migraine frequency of 15 days or more, 63.6% took inappropriate treatments by excessively using acute medications. Migraines in the banking sector in Guizhou cost the healthcare system a median of $7,578.0 thousand (25th to 75th percentile $4,509.2-$16,434.9 thousand) per year, employers $89,750.3 thousand (25th to 75th percentile $53,211.6-$151,162.2 thousand), and society $108,850.3 thousand (25th to 75th percentile $67,370.1-$181,048.6 thousand). The median societal cost per patient-year is $3,078.1. Migraine prevalence and productivity losses were identified as key cost drivers. CONCLUSIONS: The study points to the need to raise awareness of migraines across all stakeholders and to improve the organisation of the migraine care system. A substantial economic burden of migraines on the healthcare system, employers, and society at large was highlighted. These cost estimates offer evidence-based benchmarks for assessing economic savings from improved migraine management, and can also draw the attention of Chinese policymakers to prioritise migraine policies within the banking and other office-based occupations.


Assuntos
Estresse Financeiro , Transtornos de Enxaqueca , Humanos , Estudos Transversais , Transtornos de Enxaqueca/terapia , Transtornos de Enxaqueca/tratamento farmacológico , Atenção à Saúde , Aceitação pelo Paciente de Cuidados de Saúde , Efeitos Psicossociais da Doença
2.
Adv Mater ; : e2401221, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563723

RESUMO

Renewable electricity-powered nitrate/carbon dioxide co-reduction reaction toward urea production paves an attractive alternative to industrial urea processes and offers a clean on-site approach to closing the global nitrogen cycle. However, its large-scale implantation is severely impeded by challenging C-N coupling and requires electrocatalysts with high activity/selectivity. Here, cobalt-nanoparticles anchored on carbon nanosheet (Co NPs@C) are proposed as a catalyst electrode to boost yield and Faradaic efficiency (FE) toward urea electrosynthesis with enhanced C-N coupling. Such Co NPs@C renders superb urea-producing activity with a high FE reaching 54.3% and a urea yield of 2217.5 µg h-1 mgcat. -1, much superior to the Co NPs and C nanosheet counterparts, and meanwhile shows strong stability. The Co NPs@C affords rich catalytically active sites, fast reactant diffusion, and sufficient catalytic surfaces-electrolyte contacts with favored charge and ion transfer efficiencies. The theoretical calculations reveal that the high-rate formation of *CO and *NH2 intermediates is crucial for facilitating urea synthesis.

3.
Small ; : e2400141, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38431944

RESUMO

Seawater electrolysis holds tremendous promise for the generation of green hydrogen (H2 ). However, the system of seawater-to-H2 faces significant hurdles, primarily due to the corrosive effects of chlorine compounds, which can cause severe anodic deterioration. Here, a nickel phosphide nanosheet array with amorphous NiMoO4 layer on Ni foam (Ni2 P@NiMoO4 /NF) is reported as a highly efficient and stable electrocatalyst for oxygen evolution reaction (OER) in alkaline seawater. Such Ni2 P@NiMoO4 /NF requires overpotentials of just 343 and 370 mV to achieve industrial-level current densities of 500 and 1000 mA cm-2 , respectively, surpassing that of Ni2 P/NF (470 and 555 mV). Furthermore, it maintains consistent electrolysis for over 500 h, a significant improvement compared to that of Ni2 P/NF (120 h) and Ni(OH)2 /NF (65 h). Electrochemical in situ Raman spectroscopy, stability testing, and chloride extraction analysis reveal that is situ formed MoO4 2- /PO4 3- from Ni2 P@NiMoO4 during the OER test to the electrode surface, thus effectively repelling Cl- and hindering the formation of harmful ClO- .

4.
Food Chem ; 447: 139018, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38503067

RESUMO

Developing an accurate, cost-effective, reliable, and stable glucose detection sensor for the food industry poses a significant yet challenging endeavor. Herein, we present a silver nanoparticle-decorated titanium dioxide nanoribbon array on titanium plate (Ag@TiO2/TP) as an efficient electrode for non-enzymatic glucose detection in alkaline environments. Electrochemical evaluations of the Ag@TiO2/TP electrode reveal a broad linear response range (0.001 mM - 4 mM), high sensitivity (19,106 and 4264 µA mM-1 cm-2), rapid response time (6 s), and a notably low detection limit (0.18 µM, S/N = 3). Moreover, its efficacy in measuring glucose in beverage samples shows its practical applicability. The impressive performance and structural benefits of the Ag@TiO2/TP electrode highlight its potential in advancing electrochemical sensors for small molecule detection.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Nanotubos de Carbono , Nanopartículas Metálicas/química , Técnicas Eletroquímicas , Prata , Glucose/química , Eletrodos
5.
Entropy (Basel) ; 26(3)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38539754

RESUMO

Using electroencephalogram (EEG), we tested the hypothesis that the association of a neutral stimulus with the self would elicit ultra-fast neural responses from early top-down feedback modulation to late feedforward periods for cognitive processing, resulting in self-prioritization in information processing. In two experiments, participants first learned three associations between personal labels (self, friend, stranger) and geometric shapes (Experiment 1) and three colors (Experiment 2), and then they judged whether the shape/color-label pairings matched. Stimuli in Experiment 2 were shown in a social communicative setting with two avatars facing each other, one aligned with the participant's view (first-person perspective) and the other with a third-person perspective. The color was present on the t-shirt of one avatar. This setup allowed for an examination of how social contexts (i.e., perspective taking) affect neural connectivity mediating self-related processing. Functional connectivity analyses in the alpha band (8-12 Hz) revealed that self-other discrimination was mediated by two distinct phases of neural couplings between frontal and occipital regions, involving an early phase of top-down feedback modulation from frontal to occipital areas followed by a later phase of feedforward signaling from occipital to frontal regions. Moreover, while social communicative settings influenced the later feedforward connectivity phase, they did not alter the early feedback coupling. The results indicate that regardless of stimulus type and social context, the early phase of neural connectivity represents an enhanced state of awareness towards self-related stimuli, whereas the later phase of neural connectivity may be associated with cognitive processing of socially meaningful stimuli.

6.
J Colloid Interface Sci ; 663: 405-412, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38412726

RESUMO

Electrochemical conversion of nitrite (NO2-) contaminant to green ammonia (NH3) is a promising approach to achieve the nitrogen cycle. The slow kinetics of the complex multi-reaction process remains a serious issue, and there is still a need to design highly effective and selective catalysts. Herein, we report that molybdenum doped cobalt oxide nanoarray on titanium mesh (Mo-Co3O4/TM) acts as a catalyst to facilitate electroreduction of NO2- to NH3. Such a catalyst delivers an extremely high Faradaic efficiency of 96.9 % and a corresponding NH3 yield of 651.5 µmol h-1 cm-2 at -0.5 V with strong stability. Density functional theory calculations reveal that the introduction of Mo can induce the redistribution of electrons around Co atoms and further strengthen the adsorption of NO2-, which is the key to facilitating the catalytic performance. Furthermore, the assembled battery based on Mo-Co3O4/TM suggests its practical application value.

7.
J Ethnopharmacol ; 325: 117830, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38301983

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Physalis angulata L., a traditional Chinese medicine called "Kuzhi" in China, was used traditionally to treat liver diseases (eg. icterus, hepatitis) as well as malaria, asthma, and rheumatism. AIM OF THE STUDY: Our study aimed to investigate the withanolides with anti-hepatic fibrosis effect from P. angulate. MATERIALS AND METHODS: Withanolides were obtained from the EtOH extract of P. angulate by bioassay-molecular networking analysis-guided isolation using column chromatography and normal/reversed-phase semipreparative HPLC. The structures of new withanolides were elucidated by combinations of spectroscopic techniques with NMR and ECD calculations. MTT cell viability assay, AO/EB staining method, cell wound healing assay, ELISA and Western blot experiments were employed to evaluate the anti-hepatic fibrosis activity and to uncover related mechanism. Molecular docking analysis and cellular thermal shift assay were used to evaluate and verify the interaction between the active withanolides and their potential targets. RESULTS: Eight unreported withanolides, withagulides A-H (1-8), along with twenty-eight known ones were obtained from P. angulate. Withanolides 6, 9, 10, 24, 27, and 29-32 showed marked anti-hepatic fibrosis effect with COL1A1 expression inhibition above 50 %. Physalin F (9), the main component in the active fraction, significantly decreased the TGF ß1-stimulated expressions of collagen I and α-SMA in LX-2 cells. Mechanism study revealed that physalin F exerted its anti-hepatic fibrosis effect via the PI3K/AKT/mTOR signaling pathway. CONCLUSION: This study suggested that withanolides were an important class of natural products with marked anti-hepatic fibrosis effect. The main withanolide physalin F might be a promising candidate for hepatic fibrosis treatment. The work provided experimental foundation for the use of P. angulate to treat hepatic fibrosis.


Assuntos
Physalis , Vitanolídeos , Vitanolídeos/farmacologia , Vitanolídeos/uso terapêutico , Vitanolídeos/química , Physalis/química , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química
8.
Small ; : e2311055, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38295001

RESUMO

Through inducing interlayer anionic ligands and functionally modifying conductive carbon-skeleton on the transition metal chalcogenides (TMCs) parent to achieve atomic-level defect-manipulation and nanoscopic-level architecture design is of great significance, which can broaden interlayer distance, optimize electronic structure, and mitigate structural deformation to endow high-efficiency battery performance of TMCs. Herein, an intriguing 3D biconcave hollow-tyre-like anode constituted by carbon-packaged defective-rich SnSSe nanosheet grafting onto Aspergillus niger spores-derived hollow-carbon (ANDC@SnSSe@C) is reported. Systematically experimental investigations and theoretical analyses forcefully demonstrate the existence of anion Se ligand and outer-carbon all-around encapsulation on the ANDC@SnSSe@C can effectively yield abundant structural defects and Na+ -reactivity sites, accelerate rapid ion migration, widen interlayer spacing, as well as relieve volume expansion, thus further resolving the critical issues throughout the charge-discharge processes. As anticipated, as-fabricated ANDC@SnSSe@C anode contributes extraordinary reversible capacity, wonderful cyclic lifespan with 83.4% capacity retention over 2000 cycles at 20.0 A g-1 , and exceptional rate capability. A series of correlated kinetic investigations and ex situ characterizations deeply reveal the underlying springheads for the ion-transport kinetics, as well as synthetically elucidate phase-transformation mechanism of the ANDC@SnSSe@C. Furthermore, the ANDC@SnSSe@C-based sodium ion full cell and hybrid capacitor offer high-capacity contribution and remarkable energy-density output, indicative of its great practicability.

9.
iScience ; 27(1): 108738, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38260173

RESUMO

High-purity hydrogen produced by water electrolysis has become a sustainable energy carrier. Due to the corrosive environments and strong oxidizing working conditions, the main challenge faced by acidic water oxidation is the decrease in the activity and stability of anodic electrocatalysts. To address this issue, efficient strategies have been developed to design electrocatalysts toward acidic OER with excellent intrinsic performance. Electronic structure modification achieved through defect engineering, doping, alloying, atomic arrangement, surface reconstruction, and constructing metal-support interactions provides an effective means to boost OER. Based on introducing OER mechanism commonly present in acidic environments, this review comprehensively summarizes the effective strategies for regulating the electronic structure to boost the activity and stability of catalytic materials. Finally, several promising research directions are discussed to inspire the design and synthesis of high-performance acidic OER electrocatalysts.

10.
Molecules ; 29(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38257331

RESUMO

Liver fibrosis is the initial pathological process of many chronic liver diseases. Targeting hepatic stellate cell (HSC) activation is an available strategy for the therapy of liver fibrosis. We aimed to explore the anti-liver fibrosis activity and potential mechanism of phomopsterone B (PB) in human HSCs. The results showed that PB effectively attenuated the proliferation of TGF-ß1-stimulated LX-2 cells in a concentration-dependent manner at doses of 1, 2, and 4 µM. Quantitative real-time PCR and Western blot assays displayed that PB significantly reduced the expression levels of α-SMA and collagen I/III. AO/EB and Hoechst33342 staining and flow cytometry assays exhibited that PB promoted the cells' apoptosis. Meanwhile, PB diminished the number of autophagic vesicles and vacuolated structures, and the LC3B fluorescent spots indicated that PB could effectively inhibit the accretion of autophagosomes in LX-2 cells. Moreover, rapamycin and MHY1485 were utilized to further investigate the effect of mTOR in autophagy and apoptosis. The results demonstrated that PB regulated autophagy and apoptosis via the mTOR-dependent pathway in LX-2 cells. In summary, this is the first evidence that PB effectively alleviates liver fibrosis in TGF-ß1-stimulated LX-2 cells, and PB may be a promising candidate for the prevention of liver fibrosis.


Assuntos
Autofagia , Fator de Crescimento Transformador beta1 , Humanos , Cirrose Hepática/tratamento farmacológico , Autofagossomos , Apoptose
11.
iScience ; 27(1): 108736, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38269101

RESUMO

Herein, a hierarchical NiTe@NiFe-LDH core-shell array on Ni foam (NiTe@NiFe-LDH/NF) demonstrates its effectiveness for oxygen evolution reaction (OER) in alkaline seawater electrolyte. This NiTe@NiFe-LDH/NF array showcases remarkably low overpotentials of 277 mV and 359 mV for achieving current densities of 100 and 500 mA cm-2, respectively. Also, it shows a low Tafel slope of 68.66 mV dec-1. Notably, the electrocatalyst maintains robust stability over continuous electrolysis for at least 50 h at 100 mA cm-2. The remarkable performance and hierarchical structure advantages of NiTe@NiFe-LDH/NF offer innovative insights for designing efficient seawater oxidation electrocatalysts.

12.
Org Lett ; 26(5): 1094-1099, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38277138

RESUMO

Utilizing already existing DNA-encoded libraries (DELs) for the generation of a distinct DEL represents an expedited strategy for expanding the chemical space. Herein, we leverage the unique photoreactivity of tetrazoles to synthesize diacylhydrazines on DNA. Widely available carboxylic acids serving as building blocks were employed under the mild photomediated reaction conditions, affording diverse DNA-conjugated diacylhydrazines. This methodology also demonstrates robustness in DEL-compatible synthesis and facilitates the preparation of oligonucleotide-based chemical probes.


Assuntos
DNA , Biblioteca Gênica , Ácidos Carboxílicos , Bibliotecas de Moléculas Pequenas/síntese química
13.
Angew Chem Int Ed Engl ; 63(1): e202316522, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37994225

RESUMO

Seawater electrolysis is an attractive way of making H2 in coastal areas, and NiFe-based materials are among the top options for alkaline seawater oxidation (ASO). However, ample Cl- in seawater can severely corrode catalytic sites and lead to limited lifespans. Herein, we report that in situ carbon oxyanion self-transformation (COST) from oxalate to carbonate on a monolithic NiFe oxalate micropillar electrode allows safeguard of high-valence metal reaction sites in ASO. In situ/ex situ studies show that spontaneous, timely, and appropriate COST safeguards active sites against Cl- attack during ASO even at an ampere-level current density (j). Our NiFe catalyst shows efficient and stable ASO performance, which requires an overpotential as low as 349 mV to attain a j of 1 A cm-2 . Moreover, the NiFe catalyst with protective surface CO3 2- exhibits a slight activity degradation after 600 h of electrolysis under 1 A cm-2 in alkaline seawater. This work reports effective catalyst surface design concepts at the level of oxyanion self-transformation, acting as a momentous step toward defending active sites in seawater-to-H2 conversion systems.

14.
Talanta ; 269: 125452, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38064932

RESUMO

Most birds are monomorphic species and breeds, which makes it difficult to determine their gender by appearances, especially the pigeon is a farm animal with economic interest in meat production, ornamentals, sports, and experimental animals. Until now, the available methods for determining the gender of pigeons have mainly consisted of endoscopy, laparoscopy, karyotyping, polymerase chain reaction (PCR), and other similar techniques. Nonetheless, these methods have notable limitations, such as high expenses, invasiveness, and time-consuming procedures, which hinder their practicality for efficiently determining the gender of pigeons. Therefore, an easy, accurate, sensitive, on-site, affordable, and applicable rapid identification of the gender of the pigeon is widely needed for the owner of the pigeon. The purpose of this study was to develop and evaluate the efficacy of Cross-priming amplification (CPA) combined with an immune-chromatographic strip (CPA-strip) for gender identification of the pigeon. The methodology was optimized through various experimental trials. Subsequently, ten samples collected from pigeons were subjected to analysis using the optimized CPA-strip assay, and the results indicated that all female samples were accurately detected. In contrast, the blood samples collected from chickens and ducks were negative when tested with the CPA-strip assay. In conclusion, our study demonstrates the successful establishment of an immune-chromatographic CPA-strip assay for the on-site gender determination of pigeons with high accuracy.


Assuntos
Columbidae , Apresentação Cruzada , Feminino , Animais , Galinhas , Reação em Cadeia da Polimerase , Carne
15.
Food Sci Nutr ; 11(12): 7791-7802, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38107110

RESUMO

Panax notoginseng, a Chinese traditional food and herb medicine, possesses notable cardiovascular health-promoting properties, with notoginsenoside (NG)-R1 being a key active compound. Insulin resistance represents a global health concern associated with various metabolic disorders. This study investigated the effects of NG-R1 on palmitic acid (PA)-induced insulin resistance and oxidative stress in human umbilical vein endothelial cells (HUVECs). Our findings demonstrate that NG-R1 significantly alleviated impaired glucose uptake, enhanced the phosphorylation of protein kinase B (PKB/Akt) at Ser473, and reduced the phosphorylation of insulin receptor substrate 1 (IRS-1) at Ser307 in PA-treated HUVECs. Furthermore, NG-R1 treatment significantly lowered the levels of malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), while increasing the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG). Additionally, NG-R1 activated the Nrf2/ARE signaling pathway, leading to a substantial increase in the expression of antioxidant enzymes. Notably, knockdown of Nrf2 attenuated the beneficial effects of NG-R1 on PA-induced insulin resistance and oxidative stress in HUVECs, suggesting that NG-R1 exerts its effects through the Nrf2/ARE pathway. In summary, our study reveals that NG-R1 ameliorated PA-induced insulin resistance in HUVECs via Nrf2/ARE pathway, providing novel insights into its potential for alleviating metabolic disorders and cardiovascular disease.

16.
Zhen Ci Yan Jiu ; 48(12): 1183-1192, 2023 Dec 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38146240

RESUMO

OBJECTIVES: To explore the neural mechanism of visceral pain and related somatic (acupoints) sensitization by using in vivo calcium imaging of dorsal root ganglia (DRG) neurons. METHODS: Eight BALB/c mice were randomly divided into control and model groups, with 4 mice in each group. The colitis model was induced by colorectal perfusion of 2, 4, 6-trinitrobenzene sulfonic acid (TNBS) once daily for 7 days. Mice of the control group received colorectal perfusion of normal saline once daily for 7 days. The location and area of the somatic neurogenic inflammation (cutaneous exudation of Evans blue ï¼»EBï¼½) of the 2 groups of mice were observed after intravenous injection of EB. For pain behavioral tests, sixteen C57BL/6J mice were randomly divided into control and model groups, with 8 mice in each group, and a Von Frey filament was used to stimulate the referred somatic reactive regions in colitis mice, and the number of avoidance and paw withdraw reaction within 10 tests was recorded. For in vivo DRG calcium imaging tests, 24 Pirt-GCaMP6s transgenic mice were randomly and equally divided into control group and colitis model group. The responses of the neurons in L6 or L4 DRG to colorectal distension (CRD), lower back brushing, or mechanical stimulation at the hindpaw were observed using confocal fluorescence microscope. RESULTS: Compared with the control group, the area of EB exudation spot in the hindpaw and lower back regions was increased in the colitis model group (P<0.05), and the avoidance or paw withdraw numbers induced by Von Frey stimulation at the lower back and hindpaw were increased (P<0.01, P<0.05), indicating that colitis induced regional skin (acupoints) sensitization in the lower back and hindpaw regions. Compared with the control group, the percentage of L6 DRG neurons activated by 60 mm Hg CRD in the colitis model mice were apparently increased (P<0.01), the activated neurons mainly involved the medium-sized DRG neurons (P<0.01). In Pirt-GCaMP6s transgenic mice, following brushing the skin of the receptive field (lower back) of L6 DRG neurons, the fluorescence intensity of the brushing-activated DRG neurons and small, medium and large-sized neurons were significantly higher in the colitis model group than those in the control group (P<0.001, P<0.01, P<0.05). After brushing and clamping the skin of the right hindpaw (receptive field of L4 DRG neurons), the percentages of the activated L4 DRG neurons were obviously higher in the colitis model group than those in the control group (P<0.01, P<0.05), while there were no significant changes in the proportion of small, medium and large-sized neurons between the control and colitis model groups. CONCLUSIONS: Colitis may lead to body surface sensitization at the same and adjacent neuro-segments as well as to an increase of the number and activity of the responsive lumbar DRG neurons, among which the L6 DRG neurons at the same neuro-segment as the rectum colon showed an increase in the number of responders and intensity of calcium fluorescence signal while L4 DRG neurons at the level adjacent to the rectum colon showed an increase in the number of responders, suggesting that there may be different mechanisms of peripheral neural sensitization.


Assuntos
Colite , Neoplasias Colorretais , Dor Visceral , Camundongos , Animais , Dor Visceral/genética , Cálcio , Pontos de Acupuntura , Camundongos Endogâmicos C57BL , Colite/induzido quimicamente , Colite/genética , Trinitrobenzenos , Camundongos Transgênicos
17.
Small ; : e2307294, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963858

RESUMO

The pursuit of stable and efficient electrocatalysts toward seawater oxidation is of great interest, yet it poses considerable challenges. Herein, the utilization of Cr-doped CoFe-layered double hydroxide nanosheet array is reported on nickel-foam (Cr-CoFe-LDH/NF) as an efficient electrocatalyst for oxygen evolution reaction in alkaline seawater. The Cr-CoFe-LDH/NF catalyst can achieve current densities of 500 and 1000 mA cm -2 with remarkably low overpotentials of only 334 and 369 mV, respectively. Furthermore, it maintains at least 100 h stability when operated at 500 mA cm-2 .

18.
Materials (Basel) ; 16(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38005135

RESUMO

The oxidation of ß-NiAl at high temperatures leads to the preferential formation of metastable alumina, such as θ-Al2O3, which exhibits a significantly faster growth rate compared to stable α-Al2O3. However, our recent research has shown that through the use of the surface-dispersing nanoparticles (NPs) of metal oxides with a hexagonal closed pack (hcp), such as α-Al2O3, the thermal growth of α-Al2O3 can be facilitated. The present study employed laser additive manufacturing (LAM) to develop an integrated α-Al2O3 NPs surface-seeded two-phase intermetallic alloy comprising brittle ß-NiAl and tougher γ'-Ni3Al, which demonstrated better comprehensive mechanical properties. It was found that seeding the α-Al2O3 NPs promoted the early stage growth of α-Al2O3 on both ß and γ' phases during oxidation in air at 1000 °C. This led to a decrease in the oxidation rate but an enhancement in adhesion of the formed alumina scale in comparison to the naked ß/γ' two-phase alloy. The reasons for this result were interpreted.

19.
J Pain ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37918469

RESUMO

Caffeine consumption inhibits acupuncture analgesic effects by blocking adenosine signaling. However, existing evidence remains controversial. Hence, this study aimed to examine the adenosine A1 receptor (A1R) role in moderate-dose caffeine-induced abolishing effect on acupuncture analgesia using A1R knockout mice (A1R-/-). We assessed the role of A1R in physiological sensory perception and its interaction with caffeine by measuring mechanical and thermal pain thresholds and administering A1R and adenosine 2A receptor antagonists in wild-type (WT) and A1R-/- mice. Formalin- and complete Freund's adjuvant (CFA)-induced inflammatory pain models were recruited to explore moderate-dose caffeine effect on pain perception and acupuncture analgesia in WT and A1R-/- mice. Moreover, a C-fiber reflex electromyogram in the biceps femoris was conducted to validate the role of A1R in the caffeine-induced blockade of acupuncture analgesia. We found that A1R was dispensable for physiological sensory perception and formalin- and CFA-induced hypersensitivity. However, genetic deletion of A1R impaired the antinociceptive effect of acupuncture in A1R-/- mice under physiological or inflammatory pain conditions. Acute moderate-dose caffeine administration induced mechanical and thermal hyperalgesia under physiological conditions but not in formalin- and CFA-induced inflammatory pain. Moreover, caffeine significantly inhibited electroacupuncture (EA) analgesia in physiological and inflammatory pain in WT mice, comparable to that of A1R antagonists. Conversely, A1R deletion impaired the EA analgesic effect and decreased the caffeine-induced inhibitory effect on EA analgesia in physiological conditions and inflammatory pain. Moderate-dose caffeine administration diminished the EA-induced antinociceptive effect by blocking A1R. Overall, our study suggested that caffeine consumption should be avoided during acupuncture treatment. PERSPECTIVE: Moderate-dose caffeine injection attenuated EA-induced antinociceptive effect in formalin- and CFA-induced inflammatory pain mice models by blocking A1R. This highlights the importance of monitoring caffeine intake during acupuncture treatment.

20.
Animals (Basel) ; 13(19)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37835747

RESUMO

Animal viruses are a significant threat to animal health and are easily spread across the globe with the rise of globalization. The limitations in diagnosing and treating animal virus infections have made the transmission of diseases and animal deaths unpredictable. Therefore, early diagnosis of animal virus infections is crucial to prevent the spread of diseases and reduce economic losses. To address the need for rapid diagnosis, electrochemical sensors have emerged as promising tools. Electrochemical methods present numerous benefits, including heightened sensitivity and selectivity, affordability, ease of use, portability, and rapid analysis, making them suitable for real-time virus detection. This paper focuses on the construction of electrochemical biosensors, as well as promising biosensor models, and expounds its advantages in virus detection, which is a promising research direction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...